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Participants were pretrained and tested on mutually entailed trigonometric relations and
combinatorially entailed relations as they pertained to positive and negative forms of sine, cosine,
secant, and cosecant. Experiment 1 focused on training and testing transformations of these
mathematical functions in terms of amplitude and frequency followed by tests of novel relations.
Experiment 2 addressed training in accordance with frames of coordination (same as) and frames
of opposition (reciprocal of ) followed by more tests of novel relations. All assessments of derived
and novel formula-to-graph relations, including reciprocal functions with diversified amplitude
and frequency transformations, indicated that all 4 participants demonstrated substantial im-
provement in their ability to identify increasingly complex trigonometric formula-to-graph rela-
tions pertaining to same as and reciprocal of to establish mathematically complex repertoires.
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_______________________________________________________________________________

International indicators of mathematical
performance suggest that the mathematical
skills of high-school and entry-level college
students in the U.S. are causes for concern. U.S.

high-school students have consistently ranked
lower on math literacy than many industrialized
and nonindustrialized countries (24 of 29
countries) in the Organization for Economic
Cooperation and Development (OECD). The
Programme for International Student Assess-
ment (PISA), a worldwide appraisal of high-
school student performance, makes it obvious
that the performance levels of U.S. high-school
students can only be described as discouraging,
with nearly every developed nation surpassing
U.S. 10th-grade students in all quantitative skill
areas. The most troubling areas in the 2003
evaluation were math literacy and problem

Portions of this paper were presented at the 33rd annual
conference of the Association for Behavior Analysis. Earlier
versions of the Web-based training protocols used in
Experiment 1 are described in Ninness et al. (2009).

Correspondence concerning this article should be
addressed to Chris Ninness, School and Behavioral
Psychology, P.O. Box 13019 SFA Station, Stephen F.
Austin State University, Nacogdoches, Texas 75962 (e-
mail: cninness@titan.sfasu.edu).

doi: 10.1901/jaba.2009.42-191

JOURNAL OF APPLIED BEHAVIOR ANALYSIS 2009, 42, 191–208 NUMBER 2 (SUMMER 2009)

191



solving, with U.S. students proving to be
incapable of responding to items that require
fundamental algebra and the most rudimentary
levels of basic computations (PISA, 2003). These
mathematical difficulties were also reflected in
the most recent PISA outcomes on science
literacy, which indicate that ‘‘when older U.S.
students are asked to apply what they have
learned in mathematics, they demonstrate less
ability than most of their peers in other highly
industrialized countries’’ (PISA, 2006, as cited in
U.S. Department of Education, 2006, p. 24).

Insufficient exposure to mathematics instruc-
tion may account for some of these findings. In
the highest achieving Asian and European
countries, eighth-grade mathematics curricula
include the basics of three-dimensional geom-
etry, proportionality problems, and transforma-
tion of geometric functions (see Schmidt,
Houang, & Cogan, 2002, for a detailed
discussion). Japanese high-school students ac-
quire more advanced math skills (e.g., quadratic
functions, permutations and combinations,
trigonometric functions, limits, derivatives,
and the applications of integrals) than almost
all U.S. students encounter in their required
college course work (Conway & Sloane, 2005).
Despite recent legislative attempts such as No
Child Left Behind (2001), student performance
has failed to show significant improvement.

Notwithstanding, innovative behavioral re-
search conducted by Mayfield and Chase
(2002) confirmed the beneficial effects of
cumulative practice on the acquisition of math
skills among low-performing college students.
Also, Lynch and Cuvo (1995) illustrated that
teaching fifth and sixth graders to match fraction
ratios to their corresponding graphical represen-
tations and graphs to the corresponding decimal
values resulted in the emergence of nontrained
skills to match decimal to fraction and fraction to
decimal without direct training. The emergence
of untrained relations, termed stimulus equiva-
lence (Sidman, 1994) or relational framing when
the stimuli are not directly equivalent (e.g., more

than, less than; Hayes, Barnes-Holmes, & Roche,
2001), represents a possible advantage for
teachers with limited time for math instruction.

Relational frame theory (RFT) extends the
equivalence paradigm by suggesting that ver-
bally competent participants can learn to
respond in accordance with sameness and other
more complex relations among stimuli (Hayes
et al., 2001). As in equivalence terminology, a
frame of coordination refers to stimuli being the
same as or equivalent to other stimuli; a frame of
comparison involves relating stimuli along some
dimension of quantity or quality (e.g., larger
than, higher than). A frame of opposition refers
to stimuli that can be contrasted along some
dimension in which objects or events have some
order (e.g., opposite of, inverse of, reciprocal
of ).

Ninness and colleagues have developed
several computer-interactive protocols directed
at establishing advanced math skills via derived
stimulus relations. The protocols have em-
ployed matching-to-sample (MTS) strategies
to teach formula-to-graph relations for mathe-
matical transformations about the coordinate
axes (Ninness, Rumph, McCuller, Vasquez, et
al., 2005) and to teach formula-to-factored-
formula and factored-formula-to-graph rela-
tions for vertical and horizontal shifts on the
coordinate axes (Ninness, Rumph, McCuller,
Harrison, et al., 2005). Participants were able to
demonstrate derived relations by identifying
standard formulas and their graphical represen-
tations and vice versa, even though the
experimental preparations specifically precluded
any direct training of these relations.

More recently, Ninness et al. (2006) em-
ployed similar computer-interactive protocols
in the analysis of transformation of stimulus
functions and found that participant preferences
for either standard (the more difficult) or
factored formulas alternated with the prevailing
rules and independent of prevailing contingen-
cies. As discussed by Ninness et al. (2006,
pp. 315–316), derived stimulus relations ap-
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pears to be well suited to facilitate the efficient
acquisition of a wide array of complex mathe-
matical relations and mathematical reasoning
(e.g., Ensley & Crawley, 2005; Ensley &
Kaskosz, 2008), especially as it applies to
learning abstract concepts employed in algebra,
trigonometry, precalculus, and calculus (e.g.,
Sullivan, 2002). Within mathematics, trigono-
metric relations address the sides and the angles
of triangles and produce repeating values on the
coordinate axes over a specific period identified
by their formulas. Learning how the basic
trigonometric relations operate on the coordi-
nate axes is prerequisite to the acquisition of
progressively more elaborate mathematical
transformations employed in calculus and
higher level mathematics (Sullivan, 2002).

The current study extends and differs from
the previous studies by Ninness et al. (2005,
2006) in that more complex math concepts
entailing same as relations and opposite of
relations were trained. Specifically, during
Experiment 1, we trained eight two-member
trigonometric classes that address transforma-
tion of amplitude and frequency functions. The
instruction was unique in that online construc-
tion-based responding was required in addition
to traditional MTS selection procedures. In
Experiment 2, we used offline MTS procedures
to develop two four-member relational net-
works that are especially relevant to basic
trigonometry because these functions are absent
from menus of graphing calculators (i.e.,
students must learn these basic reciprocal
identifiers to become fluent in all trigonometric
relations).

EXPERIMENT 1

METHOD

Participants and Setting

After informed consent had been obtained, a
pretest was administered to determine partici-
pants’ skill levels with regard to identification of
various types of trigonometric relations. Indi-
viduals who were able to identify more than

four of 15 pretest formula-to-graph items were
excused from the experiment. Four students, all
women who ranged in age from 23 to 28 years,
participated in pretraining and the two exper-
iments. Although 1 participant had an academic
history that included a precalculus class during
high school, she correctly identified only three
of 15 items on the pretest. Thus, she was
permitted to participate. Interestingly, at the
start of the experiment, this participant was
unable to pronounce the names of several of the
trigonometric functions used in the study. The
other participants had no recollection of
exposure to the subject matter of this study.

Participants were recruited from various
academic disciplines by way of agreements with
professors to provide extra credit for taking part
in university research projects. Participants
received five points on their final examinations
for their involvement in the study. Also, each
participant could earn $0.10 per correct
response during the assessment of novel rela-
tions (maximum $6.00, which included a
minimum of $2.00 for participation). After
completing the study, all participants were
debriefed and reimbursed according to the
number of correct responses emitted during
the assessment of novel trigonometric relations.

Apparatus and Software

Training, MTS procedures, and the record-
ing of responses were controlled by the
computer programs, which were written by
the first author in Visual Basic and Flash
ActionScript 2.0. Error patterns were identified
with software written in the C++ programming
language. These software systems provided
interactive math instructions, displayed formu-
las and graphs, and recorded the accuracy of
responses during both experiments. The accu-
racy of the computer’s data compilation was
confirmed prior to initiating MTS segments.
Before each participant began, the computer
program’s data collection was compared against
hand tallies of correct and incorrect responses.
These were found to match precisely.
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Design and Procedure

Following a brief presentation on the details
of the Cartesian coordinate axes and concise
definition of reciprocal relations, participants
were pretrained regarding positive and negative
forms of sine, cosine, secant, and cosecant
functions. Then, during baseline, participants
were tested on a series of novel formula-to-
graph relations. This was followed by online
training and testing with regard to how graphs
transform in amplitude and frequency in
accordance with particular types of formula-
to-graph and graph-to-formula relations. We
then provided another assessment of novel
relations regarding these functions. Figure 1
illustrates the sequence of training and testing
for Experiments 1 and 2. Note that Experiment
1 was conducted in an attempt to lay the
foundation skills needed for Experiment 2.

Stage 1: Pretraining. During Step 1, partici-
pants were given a 4-min preliminary training
presentation in which they were exposed to an
overview of the fundamentals of the rectangular
coordinate system. In Step 2, a succinct definition
of reciprocal relations was provided, and in Step
3, participants were pretrained regarding positive
and negative forms of sine, cosine, secant, and
cosecant functions. All the pretraining procedures
in Step 3 were adapted from training strategies
employed by Ninness, Rumph, McCuller, Har-
rison, et al. (2005) and Ninness et al. (2006).
During this stage, participants were pretrained
and tested on A-B and B-C trigonometric
relations, mutually entailed (B-A and C-B)
relations, and combinatorially entailed (A-C
and C-A) relations as they pertain to how the
positive and negative forms of sine, cosine, secant,
and cosecant transform on the coordinate axis.

Baseline. During our nonconcurrent multiple
baseline, Participants 1 and 2 attempted to
identify five novel MTS relations, and Partic-
ipants 3 and 4 attempted to identify 10 novel
MTS relations (i.e., five additional items and
the same five items as Participants 1 and 2 on
Items 6 through 10). All remaining items in

Experiment 1 were the same for all participants.
The assessment of novel relations addressed
amplitude and frequency transformations. Dur-
ing each assessment item, participants attempt-
ed to match a novel sample formula with a
comparison graph from an array of six graphs
that had not been used during any previous
training or testing condition (see Figure 2).

Stage 2: Online training and testing of
amplitude and frequency transformations by way
of construction-based responding. Construction of
graphs of trigonometric formulas requires the
participant to respond in accordance with the
details of each function. During this stage,
participants were trained and assessed on
graphical transformations of trigonometric
functions built on the skills acquired during
pretraining of positive and negative forms of the
sine, cosine, secant, and cosecant functions.
Throughout this stage, we trained and sequen-
tially assessed eight two-member trigonometric
classes that addressed transformation of ampli-
tude and frequency. At the beginning of this
stage, the experimenter provided training with
online software (http://www.faculty.sfasu.edu/
ninnessherbe/graphCalcCN07.html). Table 1
illustrates these trained and derived relations.

Our procedure included aspects of modeling,
direct instruction, clear antecedent instructions,
multiple-exemplar training, feedback, and rules
for responding (Berens & Hayes, 2007). To
depict a given function prior to its transforma-
tion, we first provided the basic (nontrans-
formed) graph of each trig function on the
coordinate axes. For example, in training the
amplitude transformation of y 5 cos(x), the
screen displayed a solid line representing the
cosine function on the coordinate axes as it
would appear prior to transformation by a
change in frequency or amplitude. Participants
were trained to construct a transformation of
this function by adjusting the graphing anchors
of the green line to draw (construct) a change in
amplitude in accordance with the details of the
sample formula. At the completion of each
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Figure 1. The sequence of training and testing procedures in Experiments 1 and 2.
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graph constructed by a participant, the exper-
imenter produced a computer-generated graph
of the same function by typing the formula into
a text box, and the precise function then was
displayed on-screen in conjunction with the
participant’s constructed graph. Accuracy of the
participant’s graph was determined by visually
comparing it to the computer-generated graph
of the same function. The experimenter and a
trained observer examined each graph and
formula construction. If both the experimenter
and observer agreed the participant’s graph was
a reasonable approximation of the computer-
generated graph, the participant advanced to the
next assessment of graph-to-formula relations.
Similarly, accuracy of the participant’s formula
construction was determined by comparing the
participant’s formula to the experimenter’s
formula.

During Step 1, the experimenter explained
that multiplying the cosine function by a number
greater than 1 stretches each point vertically, to
three times its original distance along the y axis.

The easiest points to observe were the high and
low points. The high points stretch from 1 to 3,
and the low points stretch from 21 to 23. Using
the text box in the lower left field of the graphing
screen, the experimenter changed the formula
from y 5 cos(x) to y 5 3*cos(x), where the
asterisk was used as a multiplication operator.
After the graph button above the formula was
clicked, the amplitude of the graph stretched to
23 and +3 along the y axis. Next, the
experimenter used the graphing anchors to
construct a superimposed graph of this function
directly over the existing graph. The experimenter
then asked the participant to perform the same
exercise using her mouse to manipulate the
graphing anchors. Using numbers greater than
1 as multipliers, this process was repeated until
the participant was able to arrange the graph
successfully and independently. (Note that con-
struction of a graph with this software simply
requires mouse dragging each of the five red

Figure 2. Sample function of a negative sine function
transformed in amplitude and frequency.

Table 1

Training and Testing of Amplitude and Frequency

Cosine amplitude transformations with multipliers greater than
and less than 1

y 5 3*cos(x) y 5 0.5*cos(x)

Train/test Test Train/test Test

A1-B1 B1-A1 A2-B2 B2-A2

Cosine frequency transformations with multipliers greater than
and less than 1

y 5 cos(2*x) y 5 cos(0.5*x)

Train/test Test Train/test Test

A3-B3 B3-A3 A4-B4 B4-A4

Secant amplitude transformations with multipliers greater than
and less than 1

y 5 3*sec(x) y 5 0.5*sec(x)

Train/test Test Train/test Test

A5-B5 B5-A5 A6-B6 B6-A6

Secant frequency transformations with multipliers greater than
and less than 1

y 5 sec(2*x) y 5 sec(0.5*x)

Train/test Test Train/test Test

A7-B7 B7-A7 A8-B8 B8-A8
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graphing anchors from the top of the screen to
locations on the coordinate axis such that the
desired shape of the graph is fashioned. The
software system also allows users to identify where
a constructed point on the graph falls on the
coordinate axis by observing a floating text box
that moves in conjunction with the mouse arrow
or cursor; see top left side of Figure 3.)

To test an A-B vertical stretch (amplitude
increase) of the cosine function, the experimenter
typed a formula within a text box [e.g., y 5

3*cos(x)] and stated, ‘‘Using the red graphing
anchors, construct the graph of this formula.’’ At
this step in testing, the graph of the basic cosine
function, y 5 cos(x), was displayed on-screen. To
respond, the participant moved the graphing
anchors to the screen locations necessary to
construct a transformation of the graph in
accordance with the newly displayed formula
[i.e., y 5 3*cos(x)]. Then, to assess B-A mutually
entailed relations, the experimenter typed the
same or a similar formula (multipliers always
ranging between 2 and 5) into the lower right text
box. This text box (outlined in red), was labeled
‘‘input values are hidden,’’ and did not permit a
screen display of the formula typed into the text
box. When the experimenter clicked the graph
button, a graph of this hidden formula was
displayed on-screen. Thus, the participant was
unable to see the specific formula responsible for
producing the graph when the experimenter
stated, ‘‘Please type the formula needed to
produce this graph in the far left text box.’’

After typing the formula into the text box,
the participant clicked the graph button to
verify that her response matched the existing
on-screen graph. In the event that a participant
erred during the assessment of either A-B or B-
A relations, the A-B training protocol for cosine
was repeated immediately, and another assess-
ment of A-B or B-A relations was conducted. A
correct response to this test is illustrated on the
top left side of Figure 3. If the participant had
emitted more than three consecutive errors, she
would have been reimbursed for her time,

debriefed, and excused; however, all participants
easily attained these criteria (see Table 2).

During Step 2, the experimenter informed
the participant that multiplying the cosine
function by a number less than 1 causes its
graph to compress along the y axis, consistent
with the value of the multiplier. The experi-
menter provided the following rule, ‘‘Multiply-
ing the cosine function by a number less than 1
(e.g., 0.5) compresses each point vertically to
half its original distance along the y axis. Again,
the easiest points to watch are the high and low
points. You will see that the high points will
compress from 1 to 0.5, and the low points will
compress from 21 to 20.5.’’ To demonstrate
the operation of this rule, the experimenter
changed the cosine formula by multiplying it by
0.5 in the text box in the lower left text field of
the screen [y 5 0.5*cos(x)].

To test an A-B relation, the experimenter
typed the above formula into the text box [i.e., y
5 0.5*cos(x)] and stated, ‘‘Using the red
graphing anchors, construct the graph of this
formula.’’ In response, the participant moved the
graphing anchors to the screen locations necessary
to construct a transformation of the graph in
accordance with the newly displayed formula
[i.e., y 5 0.5*cos(x)]. A correct response to this
test is illustrated on the top right side of Figure 3.

To assess B-A mutually entailed relations, the
experimenter typed this formula into the lower
right text box. As in the assessment of vertical
cosine stretches described above, the participant
was unable to see the formula responsible for
generating the particular on-screen graph.
Pointing to the text box with his mouse arrow,
the experimenter asked the participant to type
the formula needed to generate the graph
displayed on-screen.

To test A-B and B-A relations, the multiplier
was set at 0.5. If an error was emitted by a
participant during the assessment of A-B and B-
A relations, she was immediately reexposed to
the A-B training of cosine vertical compression
and an additional test of A-B or B-A relations.
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Reexposure was limited to training only A-B
(formula-to-graph) relations in terms of the
vertical cosine compression function. At no
time were participants given any training
addressing B-A (graph-to-formula) relations.

This type of correction procedure was employed
throughout assessments conducted during Ex-
periment 1.

During Step 3, the experimenter informed
participants that multiplying the argument (the

Figure 3. Sample online construction-based responding.
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variable inside the parentheses) of the cosine
function by a number greater than 1 causes its
graph to compress along the x axis consistent with
that number. For example, if the argument of a
cosine function were multiplied by 2, the graph
compressed such that it became twice as frequent
but half as wide within one period of the function
(a period for all functions in this study consisted
of 2p). In this Step, the experimenter changed the
formula of the graph by multiplying it by 2 in the
lower left text field of the screen where y 5

cos(2*x). Clicking the graph button resulted in
the frequency of the graph being compressed, and
the graph became twice as frequent but half as
wide along the x axis.

In the assessment of A-B relations that
followed, the experimenter typed the formula,
y 5 cos(2*x), into the text box, pointed to the
formula with his mouse arrow, and asked the
participant to construct a graph of the formula.
In response, the participant moved the graphing
anchors to the screen locations necessary to
construct a transformation of the graph in
accordance with the newly displayed formula.
The bottom left panel of Figure 3 shows an
accurate construction-based response to the test
of A-B relations.

To assess B-A mutually entailed relations, the
experimenter typed a formula into the lower
right text box. As in previous assessments, the
participant was unable to see the formula
responsible for generating a horizontally com-
pressed graph on-screen. Pointing to a far left
text box with his mouse arrow, the experimenter
asked the participant to type the formula
needed to generate the graph displayed on-
screen. After typing a formula into the text box,

the participant was requested to click the graph
button and reveal whether her typed formula
produced the correct graph. In the event that a
participant erred during the assessment of either
A-B or B-A relations, she was reexposed to the
A-B relations training and another assessment of
A-B or B-A relations.

During Step 4, the experimenter informed
participants that multiplying the argument of a
cosine function by a number less than 1 causes the
graph to stretch horizontally along the x axis. For
example, if the argument of the cosine function is
multiplied by 0.5 [i.e., y 5 cos(0.5*x)], its graph
on the coordinate appears half as frequent but
twice as wide relative to the basic cosine function,
y 5 cos(x). The experimenter changed the
formula of the graph by multiplying the
argument by 0.5 in the text box in the lower
left text field of the screen, where y 5 cos(0.5*x).
When the graph button above the formula was
clicked, the frequency of the graph stretched
horizontally, and the graph became half as
frequent but twice as wide along the y axis. In
the assessment of A-B relations that followed, the
experimenter typed the formula, y 5 cos(0.5*x)
into the text box, pointed to the formula with his
mouse arrow, and asked the participant to
construct a graph of the formula using the red
anchors. To respond, the participant adjusted the
graphing anchors to the screen locations required
to construct a transformation of the graph in
accordance with the newly displayed formula.
The bottom right side of Figure 3 illustrates a
correct response to this item.

To assess B-A mutually entailed relations, the
experimenter typed a formula [e.g., y 5

cos(0.5*x)] into the lower right text box and

Table 2

Number of Exposures Required to Attain Mastery on Construction of Cosine and Secant Amplitude and

Frequency Functions

Participant A1-B1 A2-B2 A3-B3 A4-B4 A5-B5 A6-A6 A7-B7 A8-B8 Total

1 2 2 2 2 1 1 1 1 12
2 3 3 3 2 2 1 1 1 16
3 2 1 1 1 1 1 1 1 9
4 2 1 1 1 1 1 1 2 10
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clicked the graph button. Pointing to the far left
text box with his mouse arrow, the experimenter
asked the participant to type the formula
needed to produce the graph displayed on-
screen. In the event that a participant erred
during the assessment of either A-B or B-A
relations, she was reexposed to A-B relations
training, and another assessment of A-B or B-A
relations was immediately conducted.

Participants were exposed to the same
training as described above for transformations
addressing the secant function. They were not
trained regarding the transformation of sine and
cosecant functions; instead they were simply
informed that with regard to amplitude and
frequency, the sine and cosecant functions
transform in the same manner as cosine and
secant. Because secant transformations were
trained with the same rules as the cosine
transformations, the specific training graphs
that addressed secant are not shown.

Interobserver agreement. Each graph and for-
mula construction were assessed by an observer
and then by the experimenter. In total, there were
only six of 94 occasions (i.e., 93.6% agreement)
during which the observer and experimenter
disagreed with respect to the adequacy of a
participant’s graph or formula construction.

Assessment of novel relations before and
after training. During baseline assessments,
Participants 1 and 2 were tested on five novel
formula-to-graph relations, and Participants 3
and 4 were assessed on 10 novel formula-to-graph
relations. After completing online training and
testing of amplitude and frequency transforma-
tions, each participant was assessed with 10 novel
formula-to-graph relations of the same type as
those employed during the baseline assessment of
novel relations. These items were novel in the
sense that they involved positive and negative
forms of sine, cosine, secant, and cosecant as they
transformed in amplitude and frequency when
multiplying the function, the argument of the
function, or both, by a number greater or less
than 1 (see Figure 2).

RESULTS

All exposures to training A-B (formula-to-
graph) relations, including the initial exposure
plus any reexposures required to demonstrate a
correct construction-based response, are provid-
ed in Table 2. All 4 participants failed to
construct the graph of y 5 3*cos(x) on their first
attempts and were reexposed to graph construc-
tion training for the amplitude transformation
(A1-B1) at least once (see Column 2 of
Table 2). Following reexposure to training,
each successfully constructed the graph given a
formula as a sample stimulus, and correctly
typed the formula given a graph of y 5 3*cos(x)
as a sample stimulus. All participants mastered
subsequent functions with similar or fewer
exposures to training (follow each participant
across all columns). If errors occurred during
the assessment of A-B and B-A relations,
participants immediately returned to the A-B
training (formula to graph), and an additional
test of A-B and B-A (untrained) relations.

Figure 4 shows the multiple baseline design
across paired participants. Participant 1 failed to
identify any of the baseline novel relations items
but identified eight of 10 novel formula-to-
graph assessment items after training. Partici-
pant 2 correctly responded to one of five novel
assessment items during baseline and responded
correctly to all 10 items after training. Partic-
ipant 3 failed nine of the 10 baseline items and
only one of the 10 items after training.
Similarly, Participant 4 identified only two of
10 baseline items but was able to identify all 10
novel formula-to-graph assessments following
training.

EXPERIMENT 2

Pretraining and Experiment 1 were conducted
in an attempt to lay the critical foundation for
Experiment 2. Indeed, pilot research in our
laboratory has indicated that learning the math-
ematical relations in Experiment 2 depends on
the skills addressed in the first part of this study.
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METHOD

Participants and Setting

Experiment 2 was an extension of Experi-
ment 1, the same participants served in the
same setting, and this experiment was conduct-
ed within the same approximate 2- to 2.5-hr
time period.

Design and Procedure

Immediately following Experiment 1, all 4
participants were exposed to MTS protocols
that afforded training in accordance with frames
of coordination (same as) and frames of
opposition (reciprocal of ) as they entail trigo-
nometric operations. Targeting two four-mem-
ber relational networks, participants were
trained and tested on A-B, B-C, and C-D
relations and assessed on mutually entailed (D-
C, C-B, and B-A) and combinatorially entailed
(B-D, D-B, A-D, D-A, A-C, and C-A)
relations. This was followed by a posttreatment
assessment of novel formula-to-graph relations,
including complex reciprocal functions and
diversified amplitude and frequency transfor-
mations. In this nonconcurrent multiple base-
line design across paired participants, Partici-
pants 1 and 2 were assessed on 15 novel
formula-to-graph relations (following training),
and Participants 3 and 4 were assessed on 10
novel formula-to-graph relations. (Items 26
through 35 presented to Participants 1 and 2

were the same as Items 31 through 40 presented
to Participants 3 and 4.)

Baseline. At the beginning of Experiment 2,
participants returned to their previous computer
screens and keyboards facing away from the
experimenter, such that they were not in direct
visual contact with the experimenter throughout
the remainder of the experiment. Baseline tests of
novel formula-to-graph relations involved identi-
fication of graphical transformations pertaining
to positive and negative forms of sine, cosine,
secant, and cosecant functions in conjunction
with transformation pertaining to changes in
amplitude and frequency. Moreover, the first 10
MTS items for all participants addressed formu-
la-to-graph relations in the form of reciprocals.
Participants had not been exposed to any form of
training that would have prepared them to
respond to these items (e.g., Figure 5).

Stage 1: Training and testing of cosine and
secant reciprocals. We trained three fundamental
relations (A reciprocal of B, B same as C, and C
same as D) to see if participants could derive
their mutually entailed relations (D same as C,
C same as B, B reciprocal of A), as well as their
combinatorially entailed relations (B same as D,
D same as B, A reciprocal of D, D reciprocal of
A, A reciprocal of C, and C reciprocal of A) as
four-member relational networks (see the top of
Figure 6 as an illustration of trained and
derived relations). Thus, we attempted to have

Figure 4. Correct and incorrect responses displayed in a multiple baseline design across paired participants. The bold
double line demarcates the locations at which treatment was implemented and terminated. Errors pertaining to tests of
novel relations are identified as shaded blocks containing ones, and correct responses are depicted as zeros.
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participants acquire two four-member relational
networks pertaining to cosine reciprocal of
secant and sine reciprocal of cosecant.

Having been exposed to the basic formula-to-
graph relations addressing the positive and
negative forms of the sine, cosine, secant, and
cosecant functions during pretraining, partici-
pants were well positioned to identify the
graphical representation of the secant function
as being incorrect in the presence of the cosine
formula as a sample stimulus. Having been
exposed to pretraining and Experiment 1
training, participants were able to discriminate
the graphical representation of cosine as being
incorrect in the presence of the secant formula
as a sample stimulus. Thus, during the
assessment of trained and derived relations, we
were able to rotate the sample and comparison
stimuli across trials such that the placement of
targets and distracters were counterbalanced. In

the event that a participant erred while being
probed on any of the tested relations, she was
immediately reexposed to the training of all
three A-B, B-C, and C-D primary relations and
was reassessed on all derived relations within the
four-member relational network.

Correction strategies and MTS fluency criteria.
Fluency (in the form of rate of accurate problem
solving) is a consistent and reliable indicator of
the probability of occurrence of a newly learned
behavior (Binder, 1996). Some form of fluency
seemed to be particularly important to address
when gauging math progress; thus, our software
placed a limited hold on the time allocated to
respond to each MTS item. Specifically, any
response that required more than 30 s was
identified as an error, and if such a delay took
place, the programmed contingencies required
the participant to engage in reexposure training.
If a participant had required more than four
exposures, the program would have automati-
cally ended and that participant would have
been compensated, debriefed, and excused from
the study; however, all participants easily
achieved these criteria (see Tables 3 and 4).

During Step 1, we trained A1-B1 [i.e., y 5

cos(x) reciprocal of y 5 1/cos(x)] relations, in
which the program presented a trigonometric rule
on-screen, and the experimenter requested par-
ticipants to read aloud, ‘‘Two numbers are
reciprocal of one another when their product is
1. The reciprocal of 2, for example, is K because
2 * K 5 1. The reciprocal of the cosine function
is illustrated below.’’ Participants read the rules
on-screen twice, and each time the experimenter
used his mouse arrow to point to the respective
formulas. Participants clicked ‘‘next’’ to advance
to the screen that assessed A1-B1 performance. If
the correct comparison items were selected,
participants moved to the next set of instructed
relations; otherwise, they were reexposed to A1-
B1 (formula-to-graph) relations training.

In Step 2, the same MTS procedure was used
to train and test B1-C1 [i.e., y 5 1/cos(x) same
as y 5 sec(x)] relations. As the program

Figure 5. An example of a test of novel formula-to-
graph relations that required identification of transforma-
tions including negative coefficients and changes in
amplitude and frequency.
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Figure 6. The top panel is a four-member relational network, with solid lines representing trained relations and
dashed lines indicating derived relations (e.g., same as, reciprocal of). The bottom left panel shows assessment of B1-A1
relations in the context of reciprocal of. The bottom right panel shows an assessment of B1-D1 relations in the context of
same as.
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presented a trigonometric rule on the computer
screen, the experimenter requested that partic-
ipants read the mathematical rule aloud.
Participants read the following rule: ‘‘The
reciprocal of the cosine function is the same as
the secant function. This is referred to as a
fundamental identity.’’

The identity formulas were depicted imme-
diately below the rule, and the experimenter
used his mouse arrow to point from one
formula to the next. Participants then read the
following rule at the bottom of the screen: ‘‘In
other words, when you see 1/cos(x), you should
say ‘secant.’ ’’ After reading these rules aloud
twice, participants clicked ‘‘next’’ and advanced
to the screen that assessed B1-C1 relations. If
the correct comparison item were selected in the
context of same as, participants were exposed to
the next set of instructed relations; if not, the
software reexposed participants to training
beginning at Step 1 of Stage 1.

In Step 3, a similar procedure was employed
to train and test C1-D1 [i.e., y 5 sec(x) same as
the graphed representation of the secant
function] relations. Participants read the fol-
lowing rule: ‘‘From formula to graph, the secant
function is illustrated below.’’ The basic secant
formula and its graph were depicted immedi-
ately below the rule, and the experimenter used
his mouse arrow to point to the formula and
then to its graph. Subsequent to reading these
rules aloud twice, participants clicked ‘‘next’’
and advanced to the assessment of C1-D1
relations. (Note that the C1-D1 relations had
been assessed for combinatorial entailment as
part of the pretraining protocol.) If the correct
comparison item were identified in the context

of same as, the program moved participants to a
series of assessments addressing four-term
relations that pertained to combinatorially
entailed frames of coordination (same as) and
frames of reciprocity (opposite of). If, in any
test, the correct comparison item was not
identified, participants were reexposed to train-
ing, beginning with Step 1 of Stage 1.

During Step 4, participants were assessed on
mutually entailed (D1-C1, C1-B1, and B1-A1)
relations, as well as all combinatorially entailed
(B1-D1 and D1-B1) relations, frames of coordi-
nation, and frames of reciprocity (A1-D1, D1-
A1, A1-C1, and C1-A1; see bottom of Figure 6
for examples of B1-A1 and B1-D1 test ques-
tions). In conjunction with these primary
assessments, several probe items were provided
(i.e., tests in which the secant function was an
incorrect response) such that the placement of
targets and distracters was counterbalanced. At
each assessment, if the correct comparison item
was identified, participants advanced to the next
set of assessments. If the correct comparison item
was not identified, participants were reexposed to
training beginning at Step 1 of Stage 1.

Stage 2: Training and testing of sine and
cosecant reciprocals. After completing the train-
ing and testing of cosine and secant reciprocal
functions, participants were exposed to a series
of parallel steps pertaining to the sine and
cosecant reciprocal functions. Addressing the
training and testing of sine and cosecant
reciprocal relations, participants were trained
and tested on A2-B2 [i.e., y 5 sin(x) reciprocal
of y 5 1/sin(x)], B2-C2 [i.e., y 5 1/sin(x) same
as y 5 csc(x)], C2-D2 [i.e., y 5 csc(x) same as
the graphed representation of the cosecant

Table 3

Stage 1: Number of Exposures Required to Attain Mastery

of the Cosine-Secant Four-Member Relational Network

Participant A1-B1 B1-C1 C1-D1 Total

1 2 2 2 6
2 2 2 2 6
3 1 1 1 3
4 1 1 1 3

Table 4

Stage 2: Number of Exposures Required to Attain Mastery

of Sine-Cosecant Four-Member Relational Network

Participant A1-B1 B1-C1 C1-D1 Total

1 1 1 1 3
2 2 2 2 6
3 1 1 1 3
4 1 1 1 3
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function] relations and then assessed regarding
the mutually entailed (D2-C2, C2-B2, and B2-
A2) and combinatorially entailed (B2-D2, D2-
B2, A2-D2, D2-A2, A2-C2, and C2-A2)
relations. Just as in Stage 1, the placement of
targets and distracters was counterbalanced with
probe items. Because training and testing of the
sine and cosecant reciprocals employed the same
procedures as those directed at the training of
cosine-secant relations, the details of these
procedures are not included.

RESULTS

Complete outcomes for each participant
across Stages 1 and 2 of Experiment 2 are
provided in Table 3. Participant 1 failed to
identify the combinatorially entailed formula-
to-graph relation of A1-D1 [y 5 cos(x)
reciprocal of secant graph] and was reexposed
to all A1-B1, B1-C1, and C1-D1 relations
training in Stage 1. She then passed the
assessment of all derived relations within the
four-member cosine-secant network. Partici-
pant 2 failed to identify the formula-to-graph
combinatorially entailed relation of A1-C1 [y 5

cos(x) reciprocal of y 5 sec(x)] during Stage 1.
She was reexposed to A1-B1, B1-C1, and C1-
D1 relations training in Stage 1 and then passed
the assessments of all mutually entailed and
combinatorially entailed relations within the
cosine-secant network. During Stage 2, this
participant erred while attempting to derive a
combinatorially entailed formula-to-graph rela-
tion of A2-D2 in the form y 5 sin(x) reciprocal
of cosecant graph and was reexposed to Stage 2
A2-B2, B2-C2, and C2-D2 relations training.
Following reexposure, she passed all assessments
in the sine-cosecant relational network. Partic-
ipants 3 and 4 emitted no errors throughout the
duration of the assessments that addressed A2-
B2, B2-C2, and C2-D2 trained relations; the
mutually entailed D2-C2, C2-B2, and B2-A2
relations; or the combinatorially entailed rela-
tions including B2-D2, D2-B2, A2-D2, D2-
A2, A2-C2, and C2-A2.

Posttreatment assessment of novel formula-to-
graph relations. Figure 7 (top) shows a binary
graph depicting trial-by-trial responding with
the results of the novel trigonometric assessment
items obtained in Experiment 1, followed by
those obtained in Experiment 2. All 4 partici-
pants were assessed on 10 novel formula-to-
graph relations prior to training. After comple-
tion of training and testing of reciprocal
identities, each participant was assessed with 10
novel formula-to-graph relations that were of the
same type employed prior to training. These
items were novel in the sense that they addressed
positive and negative forms of sine, cosine,
secant, and cosecant as they transform when
multiplying the function, the argument of the
function, or both, by a number greater or less
than 1. Prior to training in Experiment 2,
Participant 1 identified two of 10 formula-to-
graph assessments (Items 16 to 25 in Experiment
2; Figure 7, top); after training, she identified 13
of 15 novel formula-to-graph assessments cor-
rectly (Items 26 to 40 in Experiment 2). Prior to
training in Experiment 2, Participant 2 correctly
responded to one of 10 novel assessments (Items
16 to 25); following training, she correctly
responded to 13 of 15 assessments of novel
relations (Items 26 to 40). Before training,
Participant 3 correctly identified only one of the
10 pretraining formula-to-graph assessments
(Items 21 to 30); after training, she identified
nine of the 10 novel formula-to-graph assess-
ments (Items 31 to 40). Prior to training in
Experiment 2, Participant 4 identified only one
of 10 baseline formula-to-graph assessments
(Items 21 to 30); after training, she identified
eight of 10 novel formula-to-graph assessments
(Items 31 to 40). Moreover, these assessments of
novel relations used sample formulas in recipro-
cal format (Figure 7, bottom). Participants 1
and 2 were exposed to five fewer baseline items
during Experiment 1 and received five additional
test items following treatment during Experi-
ment 2. Otherwise, all items in the assessment of
novel relations were the same for all participants.
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In conjunction with these novel assessments of
reciprocal relations, we provided one probe item
[y 5 2 sin(2x)]. Participant 3 emitted an
incorrect response to this test item. All other
participants responded correctly to the probe
item.

GENERAL DISCUSSION

Experiment 1 showed that online construc-
tion-based training and testing of amplitude

and frequency relations were sufficient to
prepare participants to address more complex
reciprocal trigonometric relations. During Ex-
periment 2, we trained two four-member
relational networks addressing reciprocal of
and same as trigonometric relations in accor-
dance with reciprocal identities. All participants
derived mutually entailed relations (D same as
C, C same as B, B reciprocal of A), and
combinatorially entailed relations (B same as D,
D same as B, A reciprocal of D, D reciprocal of

Figure 7. The top panel depicts trial-by-trial responding for novel trigonometric assessment items obtained in
Experiment 1, followed by Experiment 2 with the transition between experiments indicated by the dotted lines. Within
each experiment, training is designated by the solid heavy double lines. Problem numbers are listed along the x axis.
Accurate responses are represented by zeros, and errors are shaded and represented by ones. The bottom panel represents
novel relations test items.
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A, A reciprocal of C, and C reciprocal of A) that
constituted four-member relational networks
(see Figure 6, top). Participants then performed
well on tests of novel complex formula-to-graph
relations, including positive and negative forms
of sine, cosine, secant, and cosecant transformed
by multiplying the trigonometric formulas, the
argument of the formulas, or both, by varied
numbers above or below 1. Moreover, the
formula-to-graph relations identified during the
assessment of novel relations included a large
and diverse network of relations that extended
beyond the exemplars used during pretraining,
construction-based training, and MTS training.
These findings suggest that participants were
not constructing or relating samples and
comparisons as unitary stimuli, but were
learning to identify the relations among all
formulas and graphs, consistent with outcomes
from other relational frame studies of similar
learned relations (e.g., same as, more than) and
spatial and mathematical relations (Dymond &
Barnes, 1995; Ninness et al., 2006).

What makes relational networks in trigo-
nometry and precalculus powerful is their
ability to extend existing abstract relations so
that they contribute to the student’s ability to
derive similar networks while the basic charac-
teristics of the original are retained. For
example, the four-term cosine-secant reciprocal
relations network contains all combinatorially
entailed relations that form the basis of the
four-term sine-cosecant network. Although
these trigonometric functions transform graph-
ically according to patterns that are analogous,
the graphical transformations of the ‘‘even’’
cosine-secant reciprocal functions are not the
same as those of the ‘‘odd’’ sine-cosecant
reciprocal functions. Each of the trigonometric
functions trained in this study has unique
transformation characteristics, and our baseline
outcomes suggest that the patterns for each of
these functions are not intuitively obvious.
However, our data suggest that once students
have acquired the pretraining skills that pertain

to positive and negative forms of the sine,
cosine, secant, and cosecant functions; learned
the mutually entailed relations pertaining to
amplitude and frequency; and acquired the
combinatorially entailed relations addressing
the functional identities; they are well posi-
tioned to respond to a wide range of complex
and novel formula-to-graph relations.

This study employed a novel strategy of
online construction-based responding rather
than selection-based MTS procedures. The
construction procedure is somewhat similar to
Sidman’s (1994) pretraining strategies used
prior to the implementation of MTS training.
Although construction-based responding is
somewhat more time consuming than MTS
procedures, the additional instructional time
may be well worth the effort. Perhaps, some-
what analogous to the way in which multiple-
choice test items allow faster responding than
short essay test items, selecting correct compar-
ison graphs via MTS procedures is more
efficient but less demanding than constructing
graphs. The more demanding task of graph
construction may produce more robust re-
sponding during training of abstract concepts,
although this statement is speculative at this
point and requires empirical verification.

Presently, we are pursuing variations of
construction-based responding in conjunction
with MTS procedures with the ambition of
developing more relational networks that estab-
lish trigonometric identities, inverse trigono-
metric functions, and conversion of polar
coordinates to rectangular coordinates and vice
versa. Although these topics may appear to be
beyond the grasp of students who lack well-
established mathematical repertoires, the pre-
sent study and our ongoing investigations
suggest that mathematically inexperienced but
verbally competent adolescents and adults are
capable of mastering complex and multifaceted
abstract concepts efficiently when procedures
based on derived relational responding are used.
Future research might contrast protocols based
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on stimulus relations training with existing
behavioral strategies that address higher level
math operations.

Considering that the math literacy levels of
U.S. high-school students are inferior to almost
all peers from OECD countries and also
considering the potential benefits of blending
components of high-school and college-level
math curricula with strategies based on derived
stimulus relations, our ambition has been to lay
some of the groundwork for more sophisticated
computer-interactive procedures. An instruc-
tional technology of mathematics based on
derived stimulus relations might provide one
method that contributes to addressing the
challenges that face many of this nation’s high
schools and colleges in the area of basic
mathematics. We believe the emerging research
in derived stimulus relations may add an
important dimension to the technology of
teaching described so elegantly in the writings
of Skinner (1968).
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